Vectors

www.Q8maths.com

8

Use vectors to find the ratio PM : PS, showing all your working.

 $Answer(b)(ii) PM : PS = \dots$ [4]

In the diagram, *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$, $\overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{AB} = \mathbf{b}$. *P* is on the line *AB* so that *AP* : *PB* = 2 : 1. *Q* is the midpoint of *BC*.

Find, in terms of **a**, **b** and **c**, in its simplest form

(a) \overrightarrow{CB} ,

(b) the position vector of Q,

.....[2]

(c) \overrightarrow{PQ} .

PQRS is a quadrilateral and M is the midpoint of PS. $\overrightarrow{PQ} = \mathbf{a}, \ \overrightarrow{QR} = \mathbf{b} \text{ and } \overrightarrow{SQ} = \mathbf{a} - 2\mathbf{b}.$

(a) Show that $\overrightarrow{PS} = 2\mathbf{b}$.

Answer(a)

14

(b) Write down the mathematical name for the quadrilateral *PQRM*, giving reasons for your answer.

Answer(b)	because	
		[2]
		[4]

OPQR is a rectangle and *O* is the origin. *M* is the midpoint of *RQ* and *PT* : TQ = 2 : 1. $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OR} = \mathbf{r}$.

- (a) Find, in terms of p and/or r, in its simplest form
 - (i) \overrightarrow{MQ} ,

7

- (ii) \overrightarrow{MT} ,
- (iii) \overrightarrow{OT} .
- (b) RQ and OT are extended to meet at U.

Find the position vector of U in terms of **p** and **r**. Give your answer in its simplest form.

.....[2]

 $\overrightarrow{MQ} = \dots [1]$

- \overrightarrow{MT} =[1]

(c)
$$\overrightarrow{MT} = \begin{pmatrix} 2k \\ -k \end{pmatrix}$$
 and $|\overrightarrow{MT}| = \sqrt{180}$.

Find the positive value of *k*.

k =[3]

9 (a)
$$\mathbf{m} = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
 $\mathbf{n} = \begin{pmatrix} -2^{2} \\ 3 \end{pmatrix}$

(i) Work out 2m - 3n.

(ii) Calculate
$$|2\mathbf{m}-3\mathbf{n}|$$

[2]

In the diagram, *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. The point *M* lies on *AB* such that *AM* : *MB* = 3 : 2.

Find, in terms of **a** and **b**, in its simplest form

(a) \overrightarrow{AB} ,

 \overrightarrow{AB} =[1]

(b) \overrightarrow{AM} ,

 \overrightarrow{AM} =[1]

(c) the position vector of M.

.....[2]

(ii) OM is extended to the point C. The position vector of C is $\mathbf{a} + k\mathbf{b}$.

Find the value of *k*.

k =[1]

OAPB is a parallelogram. *O* is the origin, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *M* is the midpoint of *BP*.

- (a) Find, in terms of a and b, giving your answer in its simplest form,
 - (i) \overrightarrow{BA} ,

19

(ii) the position vector of M.

(b) X is on BA so that BX: XA = 1:2.

Show that *X* lies on *OM*.

Answer(b)

Question 20 is printed on the next page.

10 (a) $\overrightarrow{PQ} = \begin{pmatrix} 5 \\ -8 \end{pmatrix}$ (i) Find the value of $|\overrightarrow{PQ}|$.

(b)

$$Answer(a)(i) |\overrightarrow{PQ}| = \dots [2]$$

(ii) Q is the point (2, -3).

Find the co-ordinates of the point *P*.

In the diagram, *M* is the midpoint of *AB* and *L* is the midpoint of *OM*. The lines *OM* and *AN* intersect at *L* and $ON = \frac{1}{3}OB$. $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$.

- (i) Find, in terms of **a** and **b**, in its simplest form,
 - (a) \overrightarrow{OM} ,

$$Answer(b)(i)(a) \overrightarrow{OM} = \dots$$
[2]

 $\overrightarrow{BC} = \mathbf{a}$ and $\overrightarrow{AC} = \mathbf{b}$.

(a) Find \overrightarrow{AB} in terms of a and b.

 $Answer(a) \overrightarrow{AB} = \dots \qquad [1]$

(b) M is the midpoint of BC. X divides AB in the ratio 1:4.

> Find \overrightarrow{XM} in terms of **a** and **b**. Show all your working and write your answer in its simplest form.

> > Answer(b) $\overrightarrow{XM} = \dots$ [4]

(b) \overrightarrow{OM} , the position vector of M.

Answer(b) $\overrightarrow{OM} = \dots$ [2]

© UCLES 2014

0580/22/M/J/14

[Turn over

OACB is a parallelogram.

 $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. AN: NB = 2:3 and $AY = \frac{2}{5}AC$.

(i) Write each of the following in terms of **a** and/or **b**. Give your answers in their simplest form.

(a) \overrightarrow{ON}

(b) \overrightarrow{NY}

(ii) Write down two conclusions you can make about the line segments NY and BC.

The diagram shows a quadrilateral *OABC*. $\overrightarrow{OA} = \mathbf{a}, \overrightarrow{OC} = \mathbf{c}$ and $\overrightarrow{CB} = 2\mathbf{a}$. X is a point on *OB* such that OX: XB = 1:2.

- (a) Find, in terms of a and c, in its simplest form
 - (i) \overrightarrow{AC} ,

(ii) \overrightarrow{AX} .

For Examiner's Use

(b) the position vector of *M*, the midpoint of *QX*.

0

(a) \overrightarrow{QX} ,

Answer(b) [2]

[3]

Question 20 is printed on the next page.

19

Answer(b) $\overrightarrow{DB} = \dots$ [2]

(c) the position vector of *E*.

Т

Find, in terms of **p** and **t**, in their simplest forms,

(a) \overrightarrow{PT} ,

19

[2]

R

Q

S

For

Examiner's Use

[1]

[2]

In the diagram, *O* is the origin and $\overrightarrow{OA} = 6\mathbf{a}$, $\overrightarrow{OB} = 9\mathbf{b}$ and $\overrightarrow{OC} = 3\mathbf{c}$. The point *P* lies on *AB* such that $\overrightarrow{AP} = 3\mathbf{b} - 2\mathbf{a}$. The point *Q* lies on *BC* such that $\overrightarrow{BQ} = 2\mathbf{c} - 6\mathbf{b}$.

(a) Find, in terms of b and c, the position vector of Q. Give your answer in its simplest form.

(i) \overrightarrow{AC} ,

(ii) \overrightarrow{PQ} .

(c) Explain what your answers in **part** (b) tell you about PQ and AC.

Answer(c)	
	[2]

