Vectors

www.Q8maths.com

5 (a)

(i) Write down the position vector of A.
(ii) Find $|\overrightarrow{A B}|$, the magnitude of $\overrightarrow{A B}$.

> Answer(a)(i)

Answer(a)(ii)
(b)

O is the origin, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O Q}=\mathbf{q}$.
$O P$ is extended to R so that $O P=P R$.
$O Q$ is extended to S so that $O Q=Q S$.
(i) Write down $\overrightarrow{R Q}$ in terms of \mathbf{p} and \mathbf{q}.
$\operatorname{Answer}(b)(\mathrm{i}) \overrightarrow{R Q}=$
(ii) $P S$ and $R Q$ intersect at M and $R M=2 M Q$.

Use vectors to find the ratio $P M: P S$, showing all your working.
\qquad

7

A is the point $(-1,1)$ and B is the point $(8,7)$.
(a) Write $\overrightarrow{A B}$ as a column vector.

$$
\begin{equation*}
\text { Answer(a) } \overrightarrow{A B}=(\tag{1}
\end{equation*}
$$

(b) Find $|\overrightarrow{A B}|$.

$$
\begin{equation*}
\text { Answer }(b)|\overrightarrow{A B}|= \tag{2}
\end{equation*}
$$

(c) $\overrightarrow{A C}=2 \overrightarrow{A B}$.

Write down the co-ordinates of C.

6 (a) Calculate the magnitude of the vector $\binom{3}{-5}$.

For Examiner's Use
(b)

(i) The points P and R are marked on the grid above.
$\overrightarrow{P Q}=\binom{3}{-5}$. Draw the vector $\overrightarrow{P Q}$ on the grid above.
(ii) Draw the image of vector $\overrightarrow{P Q}$ after rotation by 90° anticlockwise about R.
(c) $\overrightarrow{D E}=2 \mathbf{a}+\mathbf{b}$ and $\overrightarrow{D C}=3 \mathbf{b}-\mathbf{a}$.

Find $\overrightarrow{C E}$ in terms of \mathbf{a} and \mathbf{b}. Write your answer in its simplest form.

$$
\text { Answer(c) } \overrightarrow{C E}=
$$

In the diagram, O is the origin.
$\overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{O D}=\mathbf{d}$.
E is on $C D$ so that $C E=2 E D$.
Find, in terms of \mathbf{c} and \mathbf{d}, in their simplest forms,
(a) $\overrightarrow{D E}$,

$$
\text { Answer(a) } \overrightarrow{D E}=
$$

(b) the position vector of E.
(b)

$$
\begin{gathered}
\text { For } \\
\text { camine } \\
\text { Use }
\end{gathered}
$$

P
NOT TO
SCALE

In the pentagon $O P Q R S, O P$ is parallel to $R Q$ and $O S$ is parallel to $P Q$.
$P Q=2 O S$ and $O P=2 R Q$.
O is the origin, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O S}=\mathbf{s}$.
Find, in terms of \mathbf{p} and \mathbf{s}, in their simplest form,
(i) the position vector of Q,

Answer(b)(i)
(ii) $\overrightarrow{S R}$.

Answer(b)(ii) $\overrightarrow{S R}=$
(c) Explain what your answers in part (b) tell you about the lines $O Q$ and $S R$.

Answer(c)

In the diagram, O is the origin, $\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{A B}=\mathbf{b}$.
P is on the line $A B$ so that $A P: P B=2: 1$.
Q is the midpoint of $B C$.

Find, in terms of \mathbf{a}, \mathbf{b} and \mathbf{c}, in its simplest form
(a) $\overrightarrow{C B}$,

$$
\begin{equation*}
\overrightarrow{C B}= \tag{1}
\end{equation*}
$$

(b) the position vector of Q,
(c) $\overrightarrow{P Q}$.

$$
\begin{equation*}
\overrightarrow{P Q}= \tag{2}
\end{equation*}
$$

(d) $\overrightarrow{O T}=\binom{-2}{5}$ and $\overrightarrow{O V}=\binom{5}{-1}$.

Write $\overrightarrow{T V}$ as a column vector.

$$
\begin{equation*}
\text { Answer(d) } \overrightarrow{T V}= \tag{2}
\end{equation*}
$$

(e)

NOT TO
SCALE
$\overrightarrow{A B}=\mathbf{b}$ and $\overrightarrow{A C}=\mathbf{c}$.
(i) Find $\overrightarrow{C B}$ in terms of \mathbf{b} and \mathbf{c}.

$$
\text { Answer(e)(i) } \overrightarrow{C B}=
$$

(ii) X divides $C B$ in the ratio $1: 3$.
M is the midpoint of $A B$.
Find $\overrightarrow{M X}$ in terms of \mathbf{b} and \mathbf{c}.
Show all your working and write your answer in its simplest form.

14

$P Q R S$ is a quadrilateral and M is the midpoint of $P S$.
$\overrightarrow{P Q}=\mathbf{a}, \overrightarrow{Q R}=\mathbf{b}$ and $\overrightarrow{S Q}=\mathbf{a}-2 \mathbf{b}$.
(a) Show that $\overrightarrow{P S}=2 \mathbf{b}$.

Answer(a)
(b) Write down the mathematical name for the quadrilateral $P Q R M$, giving reasons for your answer.

> Answer(b) because

NOT TO
SCALE
$O P Q R$ is a rectangle and O is the origin.
M is the midpoint of $R Q$ and $P T: T Q=2: 1$.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
(a) Find, in terms of \mathbf{p} and/or \mathbf{r}, in its simplest form
(i) $\overrightarrow{M Q}$,

$$
\begin{equation*}
\overrightarrow{M Q}= \tag{1}
\end{equation*}
$$

(ii) $\overrightarrow{M T}$,

$$
\begin{equation*}
\overrightarrow{M T}= \tag{1}
\end{equation*}
$$

(iii) $\overrightarrow{O T}$.

$$
\begin{equation*}
\overrightarrow{O T}= \tag{1}
\end{equation*}
$$

(b) $R Q$ and $O T$ are extended to meet at U.

Find the position vector of U in terms of \mathbf{p} and \mathbf{r}.
Give your answer in its simplest form.
(c) $\overrightarrow{M T}=\binom{2 k}{-k}$ and $|\overrightarrow{M T}|=\sqrt{180}$.

Find the positive value of k.

$$
\begin{equation*}
k= \tag{3}
\end{equation*}
$$

$9 \quad$ (a) $\quad \mathbf{m}=\binom{3}{2} \quad \mathbf{n}=\binom{-2}{3}$
(i) Work out $2 \mathbf{m}-3 \mathbf{n}$.
(ii) Calculate $|2 \mathbf{m}-3 \mathbf{n}|$.
(b) (i)

NOT TO
SCALE

In the diagram, O is the origin, $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$
The point M lies on $A B$ such that $A M: M B=3: 2$.
Find, in terms of \mathbf{a} and \mathbf{b}, in its simplest form
(a) $\overrightarrow{A B}$,

$$
\begin{equation*}
\overrightarrow{A B}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{A M}$,

$$
\begin{equation*}
\overrightarrow{A M}= \tag{1}
\end{equation*}
$$

(c) the position vector of M.
(ii) $O M$ is extended to the point C.

The position vector of C is $\mathbf{a}+k \mathbf{b}$.
Find the value of k.

$$
\begin{equation*}
k= \tag{1}
\end{equation*}
$$

19

NOT TO
SCALE
$O A P B$ is a parallelogram.
O is the origin, $\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
M is the midpoint of $B P$.
(a) Find, in terms of \mathbf{a} and \mathbf{b}, giving your answer in its simplest form,
(i) $\overrightarrow{B A}$,

$$
\begin{equation*}
\text { Answer(a)(i) } \overrightarrow{B A}= \tag{1}
\end{equation*}
$$

(ii) the position vector of M.
(b) X is on $B A$ so that $\quad B X: X A=1: 2$.

Show that X lies on $O M$.
Answer(b)
$10 \quad$ (a) $\quad \overrightarrow{P Q}=\binom{5}{-8}$
(i) Find the value of $|\overrightarrow{P Q}|$.

$$
\begin{equation*}
\operatorname{Answer}(a)(\text { i })|\overrightarrow{P Q}|= \tag{2}
\end{equation*}
$$

(ii) Q is the point $(2,-3)$.

Find the co-ordinates of the point P.
(b)

NOT TO
SCALE

In the diagram, M is the midpoint of $A B$ and L is the midpoint of $O M$.
The lines $O M$ and $A N$ intersect at L and $O N=\frac{1}{3} O B$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
(i) Find, in terms of \mathbf{a} and \mathbf{b}, in its simplest form,
(a) $\overrightarrow{O M}$,

$$
\begin{equation*}
\text { Answer(b)(i)(a) } \overrightarrow{O M}= \tag{2}
\end{equation*}
$$

(b) $\overrightarrow{O L}$,

$$
\begin{equation*}
\text { Answer(b)(i)(b) } \overrightarrow{O L}= \tag{1}
\end{equation*}
$$

(c) $\overrightarrow{A L}$.

$$
\begin{equation*}
\text { Answer(b)(i)(c) } \overrightarrow{A L}= \tag{2}
\end{equation*}
$$

$\overrightarrow{B C}=\mathbf{a}$ and $\overrightarrow{A C}=\mathbf{b}$.
(a) Find $\overrightarrow{A B}$ in terms of \mathbf{a} and \mathbf{b}.

Answer(a) $\overrightarrow{A B}=$
(b) M is the midpoint of $B C$.
X divides $A B$ in the ratio 1:4.
Find $\overrightarrow{X M}$ in terms of \mathbf{a} and \mathbf{b}.
Show all your working and write your answer in its simplest form.

14

$O P Q R$ is a trapezium with $R Q$ parallel to $O P$ and $R Q=2 O P$.
O is the origin, $\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
M is the midpoint of $P Q$.
Find, in terms of \mathbf{p} and \mathbf{r}, in its simplest form
(a) $\overrightarrow{P Q}$,

$$
\text { Answer(a) } \overrightarrow{P Q}=
$$

(b) $\overrightarrow{O M}$, the position vector of M.
(b)

$O A C B$ is a parallelogram.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O B}=\mathbf{b}$.
$A N: N B=2: 3$ and $A Y=\frac{2}{5} A C$.
(i) Write each of the following in terms of \mathbf{a} and/or \mathbf{b}.

Give your answers in their simplest form.
(a) $\overrightarrow{O N}$

$$
\begin{equation*}
\text { Answer(b)(i)(a) } \overrightarrow{O N}= \tag{2}
\end{equation*}
$$

(b) $\overrightarrow{N Y}$

$$
\text { Answer(b)(i)(b) } \overrightarrow{N Y}=
$$

(ii) Write down two conclusions you can make about the line segments $N Y$ and $B C$. Answer(b)(ii) \qquad

The diagram shows a quadrilateral $O A B C$.
$\overrightarrow{O A}=\mathbf{a}, \overrightarrow{O C}=\mathbf{c}$ and $\overrightarrow{C B}=2 \mathbf{a}$.
X is a point on $O B$ such that $O X: X B=1: 2$.
(a) Find, in terms of \mathbf{a} and \mathbf{c}, in its simplest form
(i) $\overrightarrow{A C}$,

$$
\begin{equation*}
\text { Answer(a)(i) } \overrightarrow{A C}= \tag{1}
\end{equation*}
$$

(ii) $\overrightarrow{A X}$.

Answer(a)(ii) $\overrightarrow{A X}=$
(b) Explain why the vectors $\overrightarrow{A C}$ and $\overrightarrow{A X}$ show that C, X and A lie on a straight line.

Answer(b) \qquad
\qquad

$O P Q R$ is a parallelogram, with O the origin.
M is the midpoint of $P Q$.
$O M$ and $R Q$ are extended to meet at S.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O R}=\mathbf{r}$.
(a) Find, in terms of \mathbf{p} and \mathbf{r}, in its simplest form,
(i) $\overrightarrow{O M}$,

$$
\text { Answer(a)(i) } \overrightarrow{O M}=
$$

(ii) the position vector of S.
Answer(a)(ii)
(b) When $\overrightarrow{P T}=-\frac{1}{2} \mathbf{p}+\mathbf{r}$, what can you write down about the position of T ?

Answer(b)

For Examiner's Use
O is the origin and $O P R Q$ is a parallelogram.
The position vectors of P and Q are \mathbf{p} and \mathbf{q}.
X is on $P R$ so that $P X=2 X R$.
Find, in terms of \mathbf{p} and \mathbf{q}, in their simplest forms
(a) $\overrightarrow{Q X}$,

$$
\begin{equation*}
\text { Answer(a) } \overrightarrow{Q X}= \tag{2}
\end{equation*}
$$

(b) the position vector of M, the midpoint of $Q X$.

In the diagram, $P Q S, P M R, M X S$ and $Q X R$ are straight lines.
$P Q=2 Q S$.
M is the midpoint of $P R$.
$Q X: X R=1: 3$.
$\overrightarrow{P Q}=\mathbf{q}$ and $\overrightarrow{P R}=\mathbf{r}$.
(a) Find, in terms of \mathbf{q} and \mathbf{r},
(i) $\overrightarrow{R Q}$,

$$
\begin{equation*}
\text { Answer(a)(i) } \overrightarrow{R Q}= \tag{1}
\end{equation*}
$$

(ii) $\overrightarrow{M S}$.

$$
\begin{equation*}
\text { Answer(a)(ii) } \overrightarrow{M S}= \tag{1}
\end{equation*}
$$

(b) By finding $\overrightarrow{M X}$, show that X is the midpoint of $M S$.

Answer (b)

$O A B C D E$ is a regular polygon.
(a) Write down the geometrical name for this polygon.

> Answer(a)
(b) O is the origin. $\overrightarrow{O B}=\mathbf{b}$ and $\overrightarrow{O C}=\mathbf{c}$.

Find, in terms of \mathbf{b} and \mathbf{c}, in their simplest form,
(i) $\overrightarrow{B C}$,

$$
\text { Answer(b)(i) } \overrightarrow{B C}=
$$

(ii) $\overrightarrow{O A}$,

$$
\text { Answer(b)(ii) } \overrightarrow{O A}=
$$

(iii) the position vector of E.

O is the origin.
$A B C D E F$ is a regular hexagon and O is the midpoint of $A D$.
$\overrightarrow{O A}=\mathbf{a}$ and $\overrightarrow{O C}=\mathbf{c}$.

Find, in terms of \mathbf{a} and \mathbf{c}, in their simplest form
(a) $\overrightarrow{B E}$,

$$
\begin{equation*}
\text { Answer (a) } \overrightarrow{B E}= \tag{2}
\end{equation*}
$$

(b) $\overrightarrow{D B}$,
(c) the position vector of E.

O is the origin and $O P Q R S T$ is a regular hexagon.
$\overrightarrow{O P}=\mathbf{p}$ and $\overrightarrow{O T}=\mathbf{t}$.
Find, in terms of \mathbf{p} and \mathbf{t}, in their simplest forms,
(a) $\overrightarrow{P T}$,

$$
\begin{equation*}
\text { Answer (a) } \overrightarrow{P T}= \tag{1}
\end{equation*}
$$

(b) $\overrightarrow{P R}$,

$$
\text { Answer(b) } \overrightarrow{P R}=
$$

(c) the position vector of R.

8

In the diagram, O is the origin and $\overrightarrow{O A}=6 \mathbf{a}, \overrightarrow{O B}=9 \mathbf{b}$ and $\overrightarrow{O C}=3 \mathbf{c}$.
The point P lies on $A B$ such that $\overrightarrow{A P}=3 \mathbf{b}-2 \mathbf{a}$.
The point Q lies on $B C$ such that $\overrightarrow{B Q}=2 \mathbf{c}-6 \mathbf{b}$.
(a) Find, in terms of \mathbf{b} and \mathbf{c}, the position vector of Q.

Give your answer in its simplest form.
(b) Find, in terms of \mathbf{a} and \mathbf{c}, in its simplest form
(i) $\overrightarrow{A C}$,

$$
\text { Answer(b)(i) } \overrightarrow{A C}=
$$

(ii) $\overrightarrow{P Q}$.

Answer(b)(ii) $\overrightarrow{P Q}=$
(c) Explain what your answers in part (b) tell you about $P Q$ and $A C$.

Answer(c)

(b)

In the diagram, $\overrightarrow{O A}=4 \mathbf{a}$ and $\overrightarrow{O B}=3 \mathbf{b}$.
R lies on $A B$ such that $\overrightarrow{O R}=\frac{1}{5}(12 \mathbf{a}+6 \mathbf{b})$.
T is the point such that $\overrightarrow{B T}=\frac{3}{2} \overrightarrow{O A}$.
(i) Find the following in terms of \mathbf{a} and \mathbf{b}, giving each answer in its simplest form.
(a) $\overrightarrow{A B}$

$$
\text { Answer(b)(i)(a) } \overrightarrow{A B}=
$$

(b) $\overrightarrow{A R}$

$$
\text { Answer(b)(i)(b) } \overrightarrow{A R}=
$$

(c) $\overrightarrow{O T}$

$$
\begin{equation*}
\text { Answer(b)(i)(c) } \overrightarrow{O T}= \tag{1}
\end{equation*}
$$

(ii) Complete the following statement.

The points O, R and T are in a straight line because \qquad
\qquad
(iii) Triangle $O A R$ and triangle $T B R$ are similar.

Find the value of $\frac{\text { area of triangle } T B R}{\text { area of triangle } O A R}$.

7 (a) P is the point $(2,5)$ and $\overrightarrow{P Q}=\binom{3}{-2}$.
Write down the co-ordinates of Q.

> Answer(a) (
\qquad
(b)

NOT TO
SCALE
O is the origin and $O A B C$ is a parallelogram.
M is the midpoint of $A B$.
$\overrightarrow{O C}=\mathbf{c}, \overrightarrow{O A}=3 \mathbf{a}$ and $C E=\frac{1}{3} C B$.
$O E D$ is a straight line with $O E: E D=2: 1$.
Find in terms of \mathbf{a} and \mathbf{c}, in their simplest forms
(i) $\overrightarrow{O B}$,

$$
\begin{equation*}
\operatorname{Answer}(b) \text { (i) } \overrightarrow{O B}= \tag{1}
\end{equation*}
$$

(ii) the position vector of M,
Answer(b)(ii)
(iii) $\overrightarrow{O E}$,

$$
\begin{equation*}
\text { Answer(b)(iii) } \overrightarrow{O E}= \tag{1}
\end{equation*}
$$

(iv) $\overrightarrow{C D}$.

$$
\begin{equation*}
\text { Answer(b)(iv) } \overrightarrow{C D}= \tag{2}
\end{equation*}
$$

(c) Write down two facts about the lines $C D$ and $O B$.

Answer (c) \qquad

