Linear programming

www.Q8maths.com

By shading the unwanted regions of the grid, find and label the region R which satisfies the following four inequalities.

$$
y \geqslant 0 \quad x \geqslant 4 \quad 2 y \leqslant x \quad 2 y+x \leqslant 12
$$

14

The region \boldsymbol{R} contains points which satisfy the inequalities

$$
y \leqslant \frac{1}{2} x+4, \quad y \geqslant 3 \quad \text { and } \quad x+y \geqslant 6
$$

On the grid, label with the letter \boldsymbol{R} the region which satisfies these inequalities.
You must shade the unwanted regions.

Find the three inequalities that define the unshaded region, R.

Write down the 3 inequalities which define the unshaded region.

> Answer
\qquad
\qquad

Find four inequalities that define the region, R , on the grid.
\qquad
\qquad
\qquad

Write down the three inequalities that define the unshaded region, R.

The region R satisfies these inequalities.

$$
y \leqslant 2 x \quad 3 x+4 y \geqslant 12 \quad x \leqslant 3
$$

On the grid, draw and label the region R that satisfies these inequalities. Shade the unwanted regions.

9

(a) Find the equations of the lines L_{1}, L_{2} and L_{3}.

Answer(a) L_{1} \qquad
L_{2} \qquad
L_{3}
(b) Write down the three inequalities that define the shaded region, R.

Answer(b) \qquad
\qquad
\qquad
(c) A gardener buys x bushes and y trees.

The cost of a bush is $\$ 30$ and the cost of a tree is $\$ 200$.
The shaded region R shows the only possible numbers of bushes and trees the gardener can buy.
(i) Find the number of bushes and the number of trees when the total cost is $\$ 720$.
Answer(c)(i)

\qquad
bushes
\qquad trees [2]
(ii) Find the number of bushes and the number of trees which give the greatest possible total cost. Write down this greatest possible total cost.
Answer(c)(ii)

\qquad
bushes
\qquad trees

4 Ali buys x rose bushes and y lavender bushes.
He buys:

- at least 5 rose bushes
- at most 8 lavender bushes
- at most 15 bushes in total
- more lavender bushes than rose bushes.
(a) (i) Write down four inequalities, in terms of x and/or y, to show this information.
Answer(a)(i)
\qquad
\qquad
\qquad
(ii) On the grid, show the information in part (a)(i) by drawing four straight lines. Label the region R where all four inequalities are true.

(b) Rose bushes cost $\$ 6$ each and lavender bushes cost $\$ 4.50$ each.

What is the greatest amount of money Ali could spend?
(b) A bag of sweets contains x orange sweets and y lemon sweets.

Each orange sweet costs 2 cents and each lemon sweet costs 3 cents.
The cost of a bag of sweets is less than 24 cents.
There are at least 9 sweets in each bag.
There are at least 2 lemon sweets in each bag.
(i) One of the inequalities that shows this information is $2 x+3 y<24$.

Write down the other two inequalities.
\qquad
\qquad
(ii) On the grid, by shading the unwanted regions, show the region which satisfies the three inequalities.

(iii) Find the lowest cost of a bag of sweets.

Write down the value of x and the value of y that give this cost.
\qquad cents

$$
x=
$$

$$
\begin{equation*}
y= \tag{3}
\end{equation*}
$$

8 Sima sells x biscuits and y cakes.
(a) (i) She sells at least 100 biscuits.

Write down an inequality in x.
Answer(a)(i)
(ii) She sells at least 120 cakes.

Write down an inequality in y.

> Answer(a)(ii)
(iii) She sells a maximum of 300 biscuits and cakes altogether.

Write down an inequality in x and y.

Answer(a)(iii)
(iv) Sima makes a profit of 40 cents on each biscuit and 80 cents on each cake. Her total profit is at least $\$ 160$.

Show that $x+2 y \geqslant 400$.
Answer(a)(iv)
(b) On the grid, draw four lines to show the four inequalities and shade the unwanted regions.

(c) Calculate Sima's maximum profit.

Give your answer in dollars.

3 (a) Luk wants to buy x goats and y sheep.
(i) He wants to buy at least 5 goats.

Write down an inequality in x to represent this condition.
Answer(a)(i)
[1]
(ii) He wants to buy at least 11 sheep.

Write down an inequality in y to represent this condition.
Answer(a)(ii)
(iii) He wants to buy at least 20 animals.

Write down an inequality in x and y to represent this condition.
Answer(a)(iii) ... [1]
(b) Goats cost $\$ 4$ and sheep cost $\$ 8$.

The maximum Luk can spend is $\$ 160$.
Write down an inequality in x and y and show that it simplifies to $x+2 y \leqslant 40$.
Answer (b)
(c) (i) On the grid below, draw four lines to show the four inequalities and shade the unwanted regions.

[7]
(ii) Work out the maximum number of animals that Luk can buy.

3 Pablo plants x lemon trees and y orange trees.
(a) (i) He plants at least 4 lemon trees.

Write down an inequality in x to show this information.

> Answer(a)(i)
(ii) Pablo plants at least 9 orange trees.

Write down an inequality in y to show this information.

> Answer(a)(ii)
(iii) The greatest possible number of trees he can plant is 20 .

Write down an inequality in x and y to show this information.

> Answer(a)(iii)
(b) Lemon trees cost $\$ 5$ each and orange trees cost $\$ 10$ each.

The maximum Pablo can spend is $\$ 170$.
Write down an inequality in x and y and show that it simplifies to $x+2 y \leqslant 34$.
Answer (b)
(c) (i) On the grid opposite, draw four lines to show the four inequalities and shade the unwanted region.

[7]
(ii) Calculate the smallest cost when Pablo buys a total of 20 trees.

