X & Y graphs

www.Q8maths.com

$$f(x) = 3 - x - x^2$$
 $g(x) = 3^x$

(a) Complete the tables of values for f(x) and g(x).

x	-1.5	-1	-0.5	0	0.5	1	1.5
f(x)	2.25	3	3.25		2.25	1	-0.75
	П						
	l		l	_	l	_	

x	-1.5	-1	-0.5	0	0.5	1	1.5
g(x)	0.19		0.58		1.73	3	5.20

[3]

(b) On the grid, draw the graphs of y = f(x) and y = g(x) for $-1.5 \le x \le 1.5$.

[6]

For

(c) For $-1.5 \le x \le 1.5$, use your graphs to solve	For Examiner's Use
(i) $f(x) = 0$,	
$Answer(c)(i) x = \dots [1]$	
(ii) $g(x) = 4$,	
$Answer(c)(ii) x = \dots [1]$	
(iii) $f(x) = g(x).$	
$Answer(c)(iii) x = \dots [1]$	
(d) By drawing a suitable tangent, find an estimate of the gradient of the graph of $y = f(x)$ when $x = 0.5$.	
$Answer(d) \qquad [3]$	

19 The curve $y = x^3 + 2x^2 - 4x$ is shown on the grid.

(a) By drawing a suitable tangent, find an estimate of the gradient of the curve when x = 1.

																																																	I	-,	3	,	
• •	• •	٠.	 •	٠	•	•	 •	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	 •	•	•	•	٠	•	•	•	•		•	•	•	•	•	•	•	•	•	Į	٠.	_		

(b) A point D lies on the curve.The x co-ordinate of D is negative.The gradient of the tangent at D is 0.

Write down the co-ordinates of D.

(.....) [1]

© UCLES 2016 0580/23/O/N/16

16

For Examiner's Use

The diagram shows the graph of $y = \frac{x}{2} + \frac{2}{x}$, for $0 < x \le 8$.

(a) Use the graph to solve the equation $\frac{x}{2} + \frac{2}{x} = 3$.

Answer (a)
$$x =$$
 or $x =$ [2]

(b) By drawing a suitable tangent, work out an estimate of the gradient of the graph where x = 1.

x	-3	-2	-1	-0.5	-0.2	0.2	0.5	1	2	3
f(x)	-9.33	-4.5	-2	-2.25		4.96			-3.5	-8.67

[3]

(b) Draw the graph of $f(x) = \frac{1}{x} - x^2$ for $-3 \le x \le -0.2$ and $0.2 \le x \le 3$.

[5]

For Examiner's Use

(c)	Use your graph to solve $f(x) = -3$.
	Answer(c) $x = \dots$ or $x = \dots$ [3]
(d)	By drawing a suitable line on your graph, solve the equation $f(x) = 2x - 2$.
	Answer(d) $x =$ or $x =$ [3]
(e)	By drawing a suitable tangent, work out an estimate of the gradient of the curve at the point where $x = -2$.
	You must show your working.
	Angwar(a) [3]

7

$$f(x)=2^x$$

(a) Complete the table.

х	0	0.5	1	1.5	2	2.5	3	3.5	4
f(x)		1.4	2	2.8	4	5.7	8		

[3]

For Examiner's

Use

(b) Draw the graph of y = f(x) for $0 \le x \le 4$.

[4]

© UCLES 2012

0580/43/M/J/12

For Examiner's Use

(c)	Use your graph to solve the equation $2^x = 5$.
	Answer(c) x =
(d)	Draw a suitable straight line and use it to solve the equation $2^x = 3x$.
	Answer(d) x =
(e)	Draw a suitable tangent and use it to find the co-ordinates of the point on the graph of $y = f(x)$ where the gradient of the graph is 3.
	Answer(e) (, , ,) [3]

2 The table shows some values for $y = x^3 - 3x + 2$.

x	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2
у		3.125		3.375	2		0		4

(a) Complete the table of values.

[4]

(b) On the grid, draw the graph of $y = x^3 - 3x + 2$ for $-2 \le x \le 2$.

[4]

(c) By drawing a suitable line, solve the equation $x^3 - 3x + 2 = x + 1$ for $-2 \le x \le 2$.

(d) By drawing a suitable tangent, find an estimate of the gradient of the curve at the point where x = -1.5.

2
$$f(x) = \frac{1}{x^2} - 2x$$
, $x \neq 0$

(a) Complete the table of values for f(x).

x	-3	-2.5	-2	-1.5	-1	-0.5	0.4	0.5	1	1.5	2
f(x)	6.1	5.2	4.3	3.4		5	5.5			-2.6	-3.8

[3]

(b) On the grid, draw the graph of y = f(x) for $-3 \le x \le -0.5$ and $0.4 \le x \le 2$.

[5]

(c) Solve the equation f(x) = 2.

$$Answer(c) x = \dots [1]$$

(d) Solve the equation f(x) = 2x + 3.

$$Answer(d) x = \dots [3]$$

(e) (i) Draw the tangent to the graph of y = f(x) at the point where x = -1.5. [1]

(ii) Use the tangent to estimate the gradient of the graph of y = f(x) where x = -1.5.

4
$$f(x) = x^2 - \frac{1}{x} - 4$$
, $x \neq 0$

(a) (i) Complete the table.

x	-3	-2	-1	-0.5	-0.1	0.2	0.5	1	2	3
f(x)	5.3	0.5		-1.8	6.0	-9.0	-5.8	-4		4.7

(ii) On the grid, draw the graph of y = f(x) for $-3 \le x \le -0.1$ and $0.2 \le x \le 3$.

[5]

[2]

© UCLES 2016 0580/42/M/J/16

(b)	Use your graph to solve the equation $f(x) = 0$.				
		<i>x</i> =	or <i>x</i> =	or $x =$. [3]
(c)	Find an integer k , for which $f(x) = k$ has one so	olution.			

$$k = \dots$$
 [1]

(d)	(i)	By drawing a	a suitable straight line,	solve the equation	f(x) + 2 = -5x

$$x =$$
 or $x =$ [4]

(ii)
$$f(x) + 2 = -5x$$
 can be written as $x^3 + ax^2 + bx - 1 = 0$.
Find the value of a and the value of b .

3 The diagram shows the graph of y = f(x) for $-3.5 \le x \le 2.5$.

© UCLES 2016 0580/43/M/J/16

(a) (i)	Find f(-	2).									
(ii)	Solve th	e equatio	n f(x) = 2.								[1]
				$x = \dots$		0	or $x =$		or <i>x</i> =	:	[3]
(iii)	Two tan	gents, ead	ch with grac	lient 0, ca	ın be drav	vn to	the graph	of y = for	(x).		
	Write do	own the e	quation of ϵ	each tange	ent.						
											[2]
(b) (i)	Comple	te the tab	le for $g(x) =$	$=\frac{2}{x} + 3$ fo	or −3.5 ≤	<i>x</i> ≤−	-0.5 and	$0.5 \leqslant x \leqslant$	≤ 2.5 .		
x	-3.	5 -3	-2	-1	-0.5		0.5	1	2	2.5	
g(x)	2.	4 2.3	}	1			7	5		3.8	
(ii) (iii)			site, draw the solve the s				<i>x</i> =		or <i>x</i> =	·	[3] [4] [2]
(c) Find	d gf(-2).										[2]
(d) Find	$d g^{-1}(5)$.										[1]

4
$$y = 1 - \frac{2}{x^2}, x \neq 0$$

(a) Complete the table.

x	-5	-4	-3	-2	-1	-0.5	0.5	1	2	3	4	5
у		0.88	0.78			-7	-7			0.78	0.88	

[3]

(b) On the grid, draw the graph of $y = 1 - \frac{2}{x^2}$ for $-5 \le x \le -0.5$ and $0.5 \le x \le 5$.

[5]

(c) (i) On the grid, draw the graph of y = -x - 1 for $-3 \le x \le 5$. [2]

(ii) Solve the equation $1 - \frac{2}{x^2} = -x - 1$.

 $x = \dots$ [1]

© UCLES 2016 0580/41/O/N/16

(iii)	The equation $1 - \frac{2}{x^2} = -x - 1$ can be written in the form $x^3 + px^2 + q = 0$
	Find the value of p and the value of q .

<i>p</i> =	•••••	 	•••••	
q =		 	[3	3]

- (d) The graph of $y = 1 \frac{2}{x^2}$ cuts the positive x-axis at A. B is the point (0, -2).
 - (i) Write down the co-ordinates of A.

()	Г17
	,)	1

- (ii) On the grid, draw the straight line that passes through A and B. [1]
- (iii) Complete the statement.

The straight line that passes through *A* and *B* is a

at the point[2]

2 (a) Complete the table of values for $y = \frac{x^3}{3} - x^2 + 1$.

х	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5	3
У	-2.38	-0.33	0.71		0.79	0.33	-0.13	-0.33	-0.04	

(b) Draw the graph of $y = \frac{x^3}{3} - x^2 + 1$ for $-1.5 \le x \le 3$.

The first 3 points have been plotted for you.

[4]

[2]

© UCLES 2016 0580/42/O/N/16

((c)	Using your	graph.	solve	the	equations.
٠,		Comp, com	DI WPII,	DOITE	ULIC	equations.

(i)
$$\frac{x^3}{3} - x^2 + 1 = 0$$

$$x =$$
 or $x =$ or $x =$ [3]

(ii)
$$\frac{x^3}{3} - x^2 + x + 1 = 0$$

$$x =$$
....[2]

- (d) Two tangents to the graph of $y = \frac{x^3}{3} x^2 + 1$ can be drawn parallel to the x-axis.
 - (i) Write down the equation of each of these tangents.

.....

.....[2]

(ii) For $0 \le x \le 3$, write down the smallest possible value of y.

$$y =$$
.....[1]

5
$$y = x^2 - 2x + \frac{12}{x}, \ x \neq 0$$

(a) Complete the table of values.

х	_4	-3	-2	-1	-0.5	0.5	1	2	3	4
y	21	11		-9	-22.75	23.25	11	6		11

(b) On the grid, draw the graph of $y = x^2 - 2x + \frac{12}{x}$ for $-4 \le x \le -0.5$ and $0.5 \le x \le 4$.

[5]

[2]

(c)	By drawing a suitable tangent, find an estimate of the gradient of the graph at the point (1, 11).	
	Answer(c)	[3]
(d)	The equation $x^2 - 2x + \frac{12}{x} = k$ has exactly two distinct solutions.	
	Use the graph to find	
	(i) the value of k ,	
	$Answer(d)(i) k = \dots$	[1]
	(ii) the solutions of $x^2 - 2x + \frac{12}{x} = k$.	
	$Answer(d)(ii) x = \dots or x = \dots$	[2]
(e)	The equation $x^3 + ax^2 + bx + c = 0$ can be solved by drawing the line $y = 3x + 1$ on the grid.	
	Find the value of a , the value of b and the value of c .	
	$Answer(e) \ a = \dots$	
	<i>b</i> =	
	<i>c</i> =	[3]

4
$$f(x) = x - \frac{1}{2x^2}, \quad x \neq 0$$

(a) Complete the table of values.

х	-3	-2	-1.5	-1	-0.5	-0.3	0.3	0.5	1	1.5	2
f(x)	-3.1	-2.1	-1.7		-2.5	-5.9	-5.3	-1.5		1.3	1.9

[2]

(b) On the grid, draw the graph of y = f(x) for $-3 \le x \le -0.3$ and $0.3 \le x \le 2$.

[5]

(c) Use your graph to solve the equation f(x) = 1.

Answer(c) x = [1]

© UCLES 2015 0580/43/O/N/15

(d)	There is only one negative integer value, k , for which	f(x) = k	has only one solution for all real x .
	Write down this value of k .		

- (e) The equation $2x \frac{1}{2x^2} 2 = 0$ can be solved using the graph of y = f(x) and a straight line graph.
 - (i) Find the equation of this straight line.

(ii) On the grid, draw this straight line and solve the equation $2x - \frac{1}{2x^2} - 2 = 0$.

$$Answer(e)(ii) x =$$
 [3]

8 (a) Complete the table of values for $y = x^3 - 3x + 1$.

x	-2.5	-2	-1.5	-1	-0.5	0	0.5	1	1.5	2	2.5
y	-7.125	-1		3		1	-0.375	-1	-0.125	3	9.125

[2]

(b) Draw the graph of $y = x^3 - 3x + 1$ for $-2.5 \le x \le 2.5$.

[4]

(c)	By drawing a suitable tangent, estimate the gradient of the curve at the point where $x = 2$.
	$Answer(c) \qquad [3]$
(d)	Use your graph to solve the equation $x^3 - 3x + 1 = 1$.
	Answer(d) $x =$ or $x =$ [2]
(e)	Use your graph to complete the inequality in k for which the equation
	$x^3 - 3x + 1 = k$ has three different solutions.
	$Answer(e) \dots < k < \dots [2]$

4 The table shows some values for the function $y = \frac{1}{x^2} + x$, $x \ne 0$.

х	-3	-2	-1	-0.5	0.5	1	2	3	4
у	-2.89	-1.75		3.5		2	2.25		4.06

(a) Complete the table of values.

(b) On the grid, draw the graph of $y = \frac{1}{x^2} + x$ for $-3 \le x \le -0.5$ and $0.5 \le x \le 4$.

[5]

[3]

© UCLES 2014 0580/43/M/J/14

(c) Use	your graph to so	olve the equation	$\frac{1}{x^2} + x - 3 = 0 \ .$
---------	------------------	-------------------	---------------------------------

Answer(c)
$$x =$$
 or $x =$ [3]

(d) Use your graph to solve the equation $\frac{1}{x^2} + x = 1 - x$.

$$Answer(d) x = \dots [3]$$

(e) By drawing a suitable tangent, find an estimate of the gradient of the curve at the point where x = 2.

(f) Using algebra, show that you can use the graph at y = 0 to find $\sqrt[3]{-1}$.

Answer(f)

[3]

For

Use

The table shows some values for the function $y = 11x - 2x^2 - 12$ for $1 \le x \le 4.5$. 3

x	1	1.5	2	2.5	3	3.5	4	4.5
у	-3		2	3	3			

(a) Complete the table of values.

[3]

(b) On the grid below, draw the graph of $y = 11x - 2x^2 - 12$ for $1 \le x \le 4.5$.

© UCLES 2013 0580/42/M/J/13

For Examiner's Use

(c)	By drawing a suitable line, use your graph to solve the equation $11x - 2x^2 = 11$.
	Answer(c) $x =$ or $x =$ [2]
(d)	The line $y = mx + 2$ is a tangent to the curve $y = 11x - 2x^2 - 12$ at the point P.
	By drawing this tangent,
	(i) find the co-ordinates of the point P ,
	Answer(d)(i) (, ,) [2]
	(ii) work out the value of m .
	$Answer(d)(ii) m = \dots [2]$

[3]

5 (a) Complete the table of values for $y = \frac{2}{x^2} - \frac{1}{x} - 3x$.

х	-3	-2	-1	-0.5	-0.3	0.3	0.5	1	2	3
у	9.6		6		26.5	18.0		-2	-6	-9.1

(b) Draw the graph of $y = \frac{2}{x^2} - \frac{1}{x} - 3x$ for $-3 \le x \le -0.3$ and $0.3 \le x \le 3$.

[5]

For Examiner's Use

(c) Use your graph to solve these equations.

(i)
$$\frac{2}{x^2} - \frac{1}{x} - 3x = 0$$

Answer(c)(i)
$$x =$$
 [1]

(ii)
$$\frac{2}{x^2} - \frac{1}{x} - 3x - 7.5 = 0$$

Answer(c)(ii)
$$x =$$
 or $x =$ [3]

(d) (i) By drawing a suitable straight line on the graph, solve the equation $\frac{2}{x^2} - \frac{1}{x} - 3x = 10 - 3x$.

(ii) The equation $\frac{2}{x^2} - \frac{1}{x} - 3x = 10 - 3x$ can be written in the form $ax^2 + bx + c = 0$ where a, b and c are integers.

Find the values of a, b and c.